
 Interfacing

Outline
 Interfacing basics

 Microprocessor interfacing

 I/O Addressing

 Interrupts

 Direct memory access

 Arbitration

 Hierarchical buses

 Protocols
 Serial

 Parallel

 Wireless

Introduction

 Embedded system functionality aspects

 Processing

 Transformation of data

 Implemented using processors

 Storage

 Retention of data

 Implemented using memory

 Communication

 Transfer of data between processors and memories

 Implemented using buses

 Called interfacing

A simple bus

 Wires:

 Uni-directional or bi-directional

 One line may represent multiple

wires

 Bus

 Set of wires with a single function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for

communication

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

Ports

 Conducting device on periphery

 Connects bus to processor or memory

 Often referred to as a pin

 Actual pins on periphery of IC package that plug into socket on printed-circuit board

 Sometimes metallic balls instead of pins

 Today, metal “pads” connecting processors and memories within single IC

 Single wire or set of wires with single function

 E.g., 12-wire address port

bus

Processor Memory rd'/wr

enable

addr[0-11]

data[0-7]

port

Timing Diagrams

 Most common method for describing a
communication protocol

 Time proceeds to the right on x-axis

 Control signal: low or high

 May be active low (e.g., go’, /go, or go_L)

 Use terms assert (active) and deassert

 Asserting go’ means go=0

 Data signal: not valid or valid

 Protocol may have subprotocols

 Called bus cycle, e.g., read and write

 Each may be several clock cycles

 Read example

 rd’/wr set low,address placed on addr for at
least tsetup time before enable asserted,
enable triggers memory to place data on
data wires by time tread write protocol

rd'/wr

enable

addr

data

tsetup twrite

read protocol

rd'/wr

enable

addr

data

tsetup tread

Basic protocol concepts
 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data
 Specifies a location in memory, a peripheral, or a register within a peripheral

 Time multiplexing
 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time

data serializing address/data muxing

Master Servant req

data(8)

data(15:0) data(15:0)

mux demux

Master Servant req

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

Basic protocol concepts: control

methods

Strobe protocol Handshake protocol

Master Servant req

ack

req

data

Master Servant

data

req

data

taccess

req

data

ack

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

1

2

3

4

3. Master receives data and deasserts req

4. Servant ready for next request

1

2

3

4

1. Master asserts req to receive data

2. Servant puts data on bus and asserts ack

3. Master receives data and deasserts req

4. Servant ready for next request

A strobe/handshake compromise

Fast-response case

req

data

wait

1 3

4

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

3. Master receives data and deasserts req

4. Servant ready for next request

2

Slow-response case

Master Servant req

wait

data

req

data

wait

1

3

4

1. Master asserts req to receive data

2. Servant can't put data within taccess, asserts wait ack

3. Servant puts data on bus and deasserts wait

4. Master receives data and deasserts req

2

taccess taccess

5. Servant ready for next request

5

 (wait line is unused)

ISA bus protocol – memory access

 ISA: Industry Standard

Architecture

 Common in 80x86’s

 Features

 20-bit address

 Compromise

strobe/handshake control

 4 cycles default

 Unless CHRDY deasserted

– resulting in additional wait

cycles (up to 6)

Microprocessor Memory I/O Device

ISA bus

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3

C4

DATA

memory-read bus cycle

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMW

CHRDY

C1 C2 WAIT C3

C4

DATA

ADDRESS

memory-write bus cycle

Microprocessor interfacing: I/O

addressing

 A microprocessor communicates with other
devices using some of its pins
 Port-based I/O (parallel I/O)
 Processor has one or more N-bit ports

 Processor’s software reads and writes a port just like a
register

 E.g., P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports

 Bus-based I/O
 Processor has address, data and control ports that form a

single bus

 Communication protocol is built into the processor

 A single instruction carries out the read or write protocol on
the bus

Compromises/extensions
 Parallel I/O peripheral

 When processor only supports bus-based I/O
but parallel I/O needed

 Each port on peripheral connected to a
register within peripheral that is read/written
by the processor

 Extended parallel I/O
 When processor supports port-based I/O but

more ports needed

 One or more processor ports interface with
parallel I/O peripheral extending total number
of ports available for I/O

 e.g., extending 4 ports to 6 ports in figure

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port C Port B

Adding parallel I/O to a bus-

based I/O processor

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O

Types of bus-based I/O:

memory-mapped I/O and standard I/O

 Processor talks to both memory and peripherals using
same bus – two ways to talk to peripherals
 Memory-mapped I/O
 Peripheral registers occupy addresses in same address space as

memory
 e.g., Bus has 16-bit address
 lower 32K addresses may correspond to memory
 upper 32k addresses may correspond to peripherals

 Standard I/O (I/O-mapped I/O)
 Additional pin (M/IO) on bus indicates whether a memory or

peripheral access
 e.g., Bus has 16-bit address
 all 64K addresses correspond to memory when M/IO set to 0
 all 64K addresses correspond to peripherals when M/IO set to 1

Memory-mapped I/O vs. Standard

I/O

 Memory-mapped I/O
 Requires no special instructions
 Assembly instructions involving memory like MOV and ADD

work with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to
move data between peripheral registers and memory

 Standard I/O
 No loss of memory addresses to peripherals

 Simpler address decoding logic in peripherals
possible
 When number of peripherals much smaller than address

space then high-order address bits can be ignored

 smaller and/or faster comparators

ISA bus

 ISA supports standard I/O

 /IOR distinct from /MEMR for

peripheral read

 /IOW used for writes

 16-bit address space for I/O

vs. 20-bit address space for

memory

 Otherwise very similar to

memory protocol

CYCLE

CLOCK

D[7-0]

A[15-0]

ALE

/IOR

CHRDY

 C1 C2 WAIT C3

C4

DATA

ADDRESS

ISA I/O bus read protocol

A basic memory protocol

 Interfacing an 8051 to external memory
 Ports P0 and P2 support port-based I/O when 8051 internal

memory being used

 Those ports serve as data/address buses when external memory is
being used

 16-bit address and 8-bit data are time multiplexed; low 8-bits of
address must therefore be latched with aid of ALE signal

P0

P2

Q

ALE

/RD

Adr. 7..0

Adr. 15…8

Adr. 7…0

Data

8051

74373

P0

HM6264

D Q

8

P2

ALE G

A<0...15>

D<0...7>

/OE

/WE

/CS

/WR

/RD

/CS1

/PSEN

CS2

27C256

/CS

A<0...14>

D<0...7>

/OE

A more complex memory protocol

 Generates control signals to drive the TC55V2325FF memory chip in burst mode

 Addr0 is the starting address input to device

 GO is enable/disable input to device

Specification for a single

read operation

CLK

/ADSP

/ADSC

/ADV

addr <15…0>

/WE

/OE

/CS1 and /CS2

CS3

data<31…0>

ADSP=1,

ADSC=1

ADV=1, OE=1,

Addr = ‘Z’

ADSP=1,

ADSC=0

ADV=1, OE=1,

Addr = ‘Z’

ADSP=1,

ADSC=1

ADV=0, OE=0,

Addr = ‘Z’

GO=1

GO=0

Data is

ready

here!

GO=1

GO=1

GO=0

GO=0

S0 S1

S2 S3

ADSP=0,

ADSC=0

ADV=0, OE=1,

Addr = Addr0

GO=0

GO=1

FSM description

Microprocessor interfacing: interrupts

 Suppose a peripheral intermittently receives data,
which must be serviced by the processor
 The processor can poll the peripheral regularly to

see if data has arrived – wasteful

 The peripheral can interrupt the processor when it
has data

 Requires an extra pin or pins: Int
 If Int is 1, processor suspends current program,

jumps to an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into
the hardware, so no extra time!

Microprocessor interfacing: interrupts

 What is the address (interrupt address vector) of the

ISR?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if not

enough bytes available

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals

connected by a system bus

 Compromise: interrupt address table

Interrupt-driven I/O using fixed ISR

location

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the

microprocessor. 3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and sets PC to the ISR fixed location

of 16.

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

5: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e

Interrupt-driven I/O using fixed ISR

location

1(a): P is executing its main program

1(b): P1 receives input data in a register

with address 0x8000.

μP

P1 P2

System bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Interrupt-driven I/O using fixed ISR

location

2: P1 asserts Int to request servicing by

the microprocessor

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int Int

1

Interrupt-driven I/O using fixed ISR

location

3: After completing instruction at 100,

P sees Int asserted, saves the PC’s

value of 100, and sets PC to the ISR

fixed location of 16.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100 100

Interrupt-driven I/O using fixed ISR

location

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the

resulting data to 0x8001.

4(b): After being read, P1 deasserts Int.

100

Int
0

P1

System bus

P1

0x8000

P2

0x8001

Interrupt-driven I/O using fixed ISR

location

5: The ISR returns, thus restoring PC to

100+1=101, where P resumes

executing.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100 100
+1

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Interrupt-driven I/O using vectored

interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request servicing

by the microprocessor. 3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts

Inta.

5(a): μP jumps to the address on the bus (16).

The ISR there reads data from 0x8000, modifies

the data, and writes the resulting data to 0x8001.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1 deasserts

Int.

T
im

e

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus.

Interrupt-driven I/O using vectored

interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main program

1(b): P1 receives input data in a register

with address 0x8000.

Interrupt-driven I/O using vectored

interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request servicing by the

microprocessor

Int
1

Int

Interrupt-driven I/O using vectored

interrupt

3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100 100

1
Inta

Interrupt-driven I/O using vectored

interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus

16

16

System bus

Interrupt-driven I/O using vectored

interrupt

5(a): PC jumps to the address on the bus

(16). The ISR there reads data from

0x8000, modifies the data, and writes the

resulting data to 0x8001.

5(b): After being read, P1 deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int
Inta

16

100

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

P1 P2

0x8000 0x8001

System bus

0

Int

Interrupt-driven I/O using vectored

interrupt

6: The ISR returns, thus restoring the PC to

100+1=101, where the μP resumes

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Int

100 100
+1

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Interrupt address table

 Compromise between fixed and vectored

interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe

256 words)

 Peripheral doesn’t provide ISR address, but rather

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral

Additional interrupt issues
 Maskable vs. non-maskable interrupts

 Maskable: programmer can set bit that causes processor to
ignore interrupt
 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be masked
 Typically reserved for drastic situations, like power failure requiring

immediate backup of data to non-volatile memory

 Jump to ISR
 Some microprocessors treat jump same as call of any

subroutine
 Complete state saved (PC, registers) – may take hundreds of

cycles

 Others only save partial state, like PC only
 Thus, ISR must not modify registers, or else must save them first

 Assembly-language programmer must be aware of which registers
stored

Direct memory access
 Buffering

 Temporarily storing data in memory before processing
 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state inefficient
 Regular program must wait

 DMA controller more efficient
 Separate single-purpose processor
 Microprocessor relinquishes control of system bus to DMA

controller
 Microprocessor can meanwhile execute its regular program

 No inefficient storing and restoring state due to ISR call

 Regular program need not wait unless it requires the system bus
 Harvard archictecture – processor can fetch and execute instructions as

long as they don’t access data memory – if they do, processor stalls

Peripheral to memory transfer without

DMA, using vectored interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a register

with address 0x8000.

2: P1 asserts Int to request servicing by

the microprocessor.
3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts Inta.

5(a): μP jumps to the address on the bus (16). The ISR

there reads data from 0x8000 and then writes it to

0x0001, which is in memory.

6: The ISR returns, thus restoring PC to 100+1=101,

where μP resumes executing.

5(b): After being read, P1 deasserts Int.

T
im

e

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus.

Peripheral to memory transfer without DMA,

using vectored interrupt

1(a): P is executing its main program

1(b): P1 receives input data in a register

with address 0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

Peripheral to memory transfer

without DMA, using vectored

interrupt

2: P1 asserts Int to request servicing by the

microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction
1

Int

100

Peripheral to memory transfer

without DMA, using vectored

interrupt

3: After completing instruction at 100, P

sees Int asserted, saves the PC’s value of

100, and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

Inta
1

100

Peripheral to memory transfer

without DMA, using vectored

interrupt (cont’)

4: P1 detects Inta and puts interrupt address

vector 16 on the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

Inta

instruction

100

16

16
System bus

Peripheral to memory transfer

without DMA, using vectored

interrupt (cont’)

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

5(a): P jumps to the address on the bus (16).

The ISR there reads data from 0x8000 and

then writes it to 0x0001, which is in memory.

5(b): After being read, P1 de-asserts Int.

100

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

System bus

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

0x8000

P1

Data memory

0x0001

Int

0

Peripheral to memory transfer

without DMA, using vectored

interrupt (cont’)

μP

P1

System bus

0x8000

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101: instruction

...

Main program
...

Program memory

PC

Data memory

0x0000 0x0001

16
Int

instruction

Inta

6: The ISR returns, thus restoring PC to

100+1=101, where P resumes executing.

100 100
+1

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x0001, R0

19:

ISR

100:

101: instruction

...

Main program
...

instruction

RETI # ISR return

Peripheral to memory transfer with

DMA

1(a): μP is executing its main program.

It has already configured the DMA ctrl

registers.

1(b): P1 receives input

data in a register with

address 0x8000.

2: P1 asserts req to request

servicing by DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts Dreq

to request control of

system bus.

4: After executing instruction 100, μP

sees Dreq asserted, releases the system

bus, asserts Dack, and resumes

execution. μP stalls only if it needs the

system bus to continue executing.
5: (a) DMA ctrl asserts

ack (b) reads data from

0x8000 and (b) writes that

data to 0x0001.

6:. DMA de-asserts Dreq

and ack completing

handshake with P1.
7(a): μP de-asserts Dack and resumes

control of the bus.

Peripheral to memory transfer with

DMA (cont’)

1(a): P is executing its main program. It has

already configured the DMA ctrl registers

1(b): P1 receives input data in a register with

address 0x8000.

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Peripheral to memory transfer with

DMA (cont’)

2: P1 asserts req to request servicing

 by DMA ctrl.

3: DMA ctrl asserts Dreq to request control of

system bus

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req req

1

P1
Dreq

1

DMA ctrl P1

Peripheral to memory transfer with

DMA (cont’)

4: After executing instruction 100, P sees

Dreq asserted, releases the system bus, asserts

Dack, and resumes execution, P stalls only if

it needs the system bus to continue executing.

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1

Peripheral to memory transfer with

DMA (cont’)

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

5: DMA ctrl (a) asserts ack, (b) reads data

from 0x8000, and (c) writes that data to

0x0001.

(Meanwhile, processor still executing if not

stalled!)

ack
1

Peripheral to memory transfer with

DMA (cont’)

6: DMA de-asserts Dreq and ack completing

the handshake with P1.

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0 Dreq

0

ISA bus DMA cycles

Processor Memory

I/O Device

ISA-Bus

DMA

R

A

R A

DMA Memory-Write Bus Cycle

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/IOR

/MEMW

CHRDY

C1 C2 C3 C4 C5 C6

C7

DATA

DMA Memory-Read Bus Cycle

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

/IOW

CHRDY

C1 C2 C3 C4 C5 C6

C7

DATA

Arbitration: Priority arbiter
 Consider the situation where multiple peripherals request service from

single resource (e.g., microprocessor, DMA controller) simultaneously
- which gets serviced first?

 Priority arbiter
 Single-purpose processor
 Peripherals make requests to arbiter, arbiter makes requests to

resource
 Arbiter connected to system bus for configuration only

 Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Arbitration using a priority arbiter

1. 1. Microprocessor is executing its program.

2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.

3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.

4. 4. Microprocessor stops executing its program and stores its state.

5. 5. Microprocessor asserts Inta.

6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.

7. 7. Peripheral1 puts its interrupt address vector on the system bus

8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns

9. (and completes handshake with arbiter).

10. 9. Microprocessor resumes executing its program.

Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Arbitration: Priority arbiter
 Types of priority

 Fixed priority

 each peripheral has unique rank

 highest rank chosen first with simultaneous requests

 preferred when clear difference in rank between

peripherals

 Rotating priority (round-robin)

 priority changed based on history of servicing

 better distribution of servicing especially among

peripherals with similar priority demands

Arbitration: Daisy-chain arbitration

 Arbitration done by peripherals
 Built into peripheral or external logic added

 req input and ack output added to each peripheral

 Peripherals connected to each other in daisy-chain manner
 One peripheral connected to resource, all others connected “upstream”
 Peripheral’s req flows “downstream” to resource, resource’s ack flows

“upstream” to requesting peripheral

 Closest peripheral has highest priority

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Arbitration: Daisy-chain arbitration

 Pros/cons

 Easy to add/remove peripheral - no system

redesign needed

 Does not support rotating priority

 One broken peripheral can cause loss of access to

other peripherals
P

System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Micro-

processor

Priority

arbiter

Peripheral

1

System bus

Int

Inta
Peripheral

2

Ireq1

Iack2

Iack1

Ireq2

Network-oriented arbitration

 When multiple microprocessors share a bus

(sometimes called a network)

 Arbitration typically built into bus protocol

 Separate processors may try to write

simultaneously causing collisions

 Data must be resent

 Don’t want to start sending again at same time

 statistical methods can be used to reduce chances

 Typically used for connecting multiple distant

chips

 Trend – use to connect multiple on-chip processors

Example: Vectored interrupt using

an interrupt table
 Fixed priority: i.e., Peripheral1 has highest priority

 Keyword “_at_” followed by memory address forces
compiler to place variables in specific memory
locations

 e.g., memory-mapped registers in arbiter, peripherals

 A peripheral’s index into interrupt table is sent to
memory-mapped register in arbiter

 Peripherals receive external data and raise interrupt Jump Table

M
em

o
ry

 B
u

s

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

MASK

IDX0

IDX1

ENABLE

DATA

MEMORY

void main() {

InitializePeripherals();
for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;

unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;

unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;

unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;

unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;

unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;

void Peripheral1_ISR(void) {
unsigned char data;

data = PERIPHERAL1_DATA_REG;
// do something with the data

}
void Peripheral2_ISR(void) {

unsigned char data;
data = PERIPHERAL2_DATA_REG;

// do something with the data
}

void InitializePeripherals(void) {
ARBITER_MASK_REG = 0x03; // enable both channels

ARBITER_CH0_INDEX_REG = 13;
ARBITER_CH1_INDEX_REG = 17;

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;
INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;

ARBITER_ENABLE_REG = 1;
}

Intel 8237 DMA controller

Intel 8237 D[7..0]

A[19..0]

ALE

MEMR

MEMW

IOR

IOW

HLDA

HRQ

REQ 0

ACK 0

REQ 1

ACK 1

REQ 2

ACK 2

REQ 3

ACK 3

Signal Description

D[7..0] These wires are connected to the system bus (ISA) and are used by the

microprocessor to write to the internal registers of the 8237.

A[19..0] These wires are connected to the system bus (ISA) and are used by the DMA to

issue the memory location where the transferred data is to be written to. The 8237 is

also addressed by the micro-processor through the lower bits of these address lines.ALE* This is the address latch enable signal. The 8237 use this signal when driving the

system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus

(ISA).

MEMW* This is the memory read signal issued by the 8237 when driving the system bus (ISA).

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus

(ISA) in order to read a byte from an I/O device

IOW* This is the I/O device write signal issued by the 8237 when driving the system bus

(ISA) in order to write a byte to an I/O device.

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it has

relinquished the system bus (ISA).
HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a

request to relinquish the system bus (ISA).

REQ 0,1,2,3 An attached device to one of these channels asserts this signal to request a DMA

transfer.

ACK 0,1,2,3 The 8237 asserts this signal to grant a DMA transfer to an attached device to one of

these channels.

*See the ISA bus description in this chapter for complete details.

Intel 8259 programmable priority

controller
Intel 8259 D[7..0]

A[0..0]

RD

WR

INT

INTA

CAS[2..0]

SP/EN

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

Signal Description

D[7..0] These wires are connected to the system bus and are used by the microprocessor to

write or read the internal registers of the 8259.

A[0..0] This pin actis in cunjunction with WR/RD signals. It is used by the 8259 to decipher

various command words the microprocessor writes and status the microprocessor

wishes to read.

WR When this write signal is asserted, the 8259 accepts the command on the data line, i.e.,

the microprocessor writes to the 8259 by placing a command on the data lines and

asserting this signal.

RD When this read signal is asserted, the 8259 provides on the data lines its status, i.e., the

microprocessor reads the status of the 8259 by asserting this signal and reading the data

lines.

INT This signal is asserted whenever a valid interrupt request is received by the 8259, i.e., it

is used to interrupt the microprocessor.

INTA This signal, is used to enable 8259 interrupt-vector data onto the data bus by a sequence

of interrupt acknowledge pulses issued by the microprocessor.

IR

0,1,2,3,4,5,6,7

An interrupt request is executed by a peripheral device when one of these signals is

asserted.

CAS[2..0] These are cascade signals to enable multiple 8259 chips to be chained together.

SP/EN This function is used in conjunction with the CAS signals for cascading purposes.

Multilevel bus architectures

 Processor-local bus

 High speed, wide, most frequent
communication

 Connects microprocessor, cache,
memory controllers, etc.

 Peripheral bus

 Lower speed, narrower, less frequent
communication

 Typically industry standard bus (ISA,
PCI) for portability

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

Bridge Peripheral Peripheral Peripheral

Peripheral bus

• Don’t want one bus for all communication

– Peripherals would need high-speed, processor-specific bus interface

• excess gates, power consumption, and cost; less portable

– Too many peripherals slows down bus

• Bridge

– Single-purpose processor converts communication between busses

Advanced communication principles
 Layering

 Break complexity of communication protocol into pieces easier to design
and understand

 Lower levels provide services to higher level

 Lower level might work with bits while higher level might work with packets of data

 Physical layer

 Lowest level in hierarchy

 Medium to carry data from one actor (device or node) to another

 Parallel communication

 Physical layer capable of transporting multiple bits of data

 Serial communication

 Physical layer transports one bit of data at a time

 Wireless communication

 No physical connection needed for transport at physical layer

Parallel communication
 Multiple data, control, and possibly power wires

 One bit per wire

 High data throughput with short distances

 Typically used when connecting devices on same IC

or same circuit board

 Bus must be kept short

 long parallel wires result in high capacitance values which requires

more time to charge/discharge

 Data misalignment between wires increases as length increases

 Higher cost, bulky

Serial communication

 Single data wire, possibly also control and power wires

 Words transmitted one bit at a time

 Higher data throughput with long distances

 Less average capacitance, so more bits per unit of time

 Cheaper, less bulky

 More complex interfacing logic and communication

protocol

 Sender needs to decompose word into bits

 Receiver needs to recompose bits into word

 Control signals often sent on same wire as data increasing protocol

complexity

Wireless communication
 Infrared (IR)

 Electronic wave frequencies just below visible light spectrum

 Diode emits infrared light to generate signal

 Infrared transistor detects signal, conducts when exposed to

infrared light

 Cheap to build

 Need line of sight, limited range

 Radio frequency (RF)

 Electromagnetic wave frequencies in radio spectrum

 Analog circuitry and antenna needed on both sides of

transmission

 Line of sight not needed, transmitter power determines range

Error detection and correction
 Often part of bus protocol

 Error detection: ability of receiver to detect errors during
transmission

 Error correction: ability of receiver and transmitter to cooperate to
correct problem

 Typically done by acknowledgement/retransmission protocol

 Bit error: single bit is inverted

 Burst of bit error: consecutive bits received incorrectly

 Parity: extra bit sent with word used for error detection

 Odd parity: data word plus parity bit contains odd number of 1’s

 Even parity: data word plus parity bit contains even number of 1’s

 Always detects single bit errors, but not all burst bit errors

 Checksum: extra word sent with data packet of multiple words

 e.g., extra word contains XOR sum of all data words in packet

Serial protocols: I2C

 I2C (Inter-IC)

 Two-wire serial bus protocol developed by Philips Semiconductors

nearly 20 years ago

 Enables peripheral ICs to communicate using simple communication

hardware

 Data transfer rates up to 100 kbits/s and 7-bit addressing possible in

normal mode

 3.4 Mbits/s and 10-bit addressing in fast-mode

 Common devices capable of interfacing to I2C bus:

 EPROMS, Flash, and some RAM memory, real-time clocks, watchdog

timers, and microcontrollers

I2C bus structure
SCL

SDA

Micro-

controller

(master)

EEPROM

(servant)

Temp.

Sensor

(servant)

LCD-

controller

(servant) < 400 pF

Addr=0x01 Addr=0x02 Addr=0x03

D

C

S

T

A

R

T

A

6

A

5

A

0

R

/

w

A

C

K

D

8

D

7

D

0

A

C

K

S

T

O

P

From

Servant

From

receiver

Typical read/write cycle

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

Start condition Sending 0 Sending 1 Stop condition

Serial protocols: CAN
 CAN (Controller area network)

 Protocol for real-time applications

 Developed by Robert Bosch GmbH

 Originally for communication among components of cars

 Applications now using CAN include:

 elevator controllers, copiers, telescopes, production-line control systems,
and medical instruments

 Data transfer rates up to 1 Mbit/s and 11-bit addressing

 Common devices interfacing with CAN:

 8051-compatible 8592 processor and standalone CAN controllers

 Actual physical design of CAN bus not specified in protocol

 Requires devices to transmit/detect dominant and recessive signals to/from bus

 e.g., ‘1’ = dominant, ‘0’ = recessive if single data wire used

 Bus guarantees dominant signal prevails over recessive signal if asserted
simultaneously

Serial protocols: FireWire
 FireWire (a.k.a. I-Link, Lynx, IEEE 1394)

 High-performance serial bus developed by Apple Computer Inc.

 Designed for interfacing independent electronic components

 e.g., Desktop, scanner

 Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing

 Plug-and-play capabilities

 Packet-based layered design structure

 Applications using FireWire include:

 disk drives, printers, scanners, cameras

 Capable of supporting a LAN similar to Ethernet

 64-bit address:

 10 bits for network ids, 1023 subnetworks

 6 bits for node ids, each subnetwork can have 63 nodes

 48 bits for memory address, each node can have 281 terabytes of distinct locations

Serial protocols: USB
 USB (Universal Serial Bus)

 Easier connection between PC and monitors, printers, digital speakers,
modems, scanners, digital cameras, joysticks, multimedia game
equipment

 2 data rates:

 12 Mbps for increased bandwidth devices

 1.5 Mbps for lower-speed devices (joysticks, game pads)

 Tiered star topology can be used

 One USB device (hub) connected to PC

 hub can be embedded in devices like monitor, printer, or keyboard or can be standalone

 Multiple USB devices can be connected to hub

 Up to 127 devices can be connected like this

 USB host controller

 Manages and controls bandwidth and driver software required by each
peripheral

 Dynamically allocates power downstream according to devices
connected/disconnected

Parallel protocols: PCI Bus

 PCI Bus (Peripheral Component Interconnect)

 High performance bus originated at Intel in the early 1990’s

 Standard adopted by industry and administered by PCISIG (PCI Special

Interest Group)

 Interconnects chips, expansion boards, processor memory subsystems

 Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing

 Later extended to 64-bit while maintaining compatibility with 32-bit schemes

 Synchronous bus architecture

 Multiplexed data/address lines

Parallel protocols: ARM Bus

 ARM Bus

 Designed and used internally by ARM Corporation

 Interfaces with ARM line of processors

 Many IC design companies have own bus protocol

 Data transfer rate is a function of clock speed

 If clock speed of bus is X, transfer rate = 16 x X bits/s

 32-bit addressing

Wireless protocols: IrDA
 IrDA

 Protocol suite that supports short-range point-to-point infrared

data transmission

 Created and promoted by the Infrared Data Association (IrDA)

 Data transfer rate of 9.6 kbps and 4 Mbps

 IrDA hardware deployed in notebook computers, printers,

PDAs, digital cameras, public phones, cell phones

 Lack of suitable drivers has slowed use by applications

 Windows 2000/98 now include support

 Becoming available on popular embedded OS’s

Wireless protocols: Bluetooth

 Bluetooth

 New, global standard for wireless connectivity

 Based on low-cost, short-range radio link

 Connection established when within 10 meters of each other

 No line-of-sight required

 e.g., Connect to printer in another room

Wireless Protocols: IEEE 802.11
 IEEE 802.11

 Proposed standard for wireless LANs

 Specifies parameters for PHY and MAC layers of network

 PHY layer

 physical layer

 handles transmission of data between nodes

 provisions for data transfer rates of 1 or 2 Mbps

 operates in 2.4 to 2.4835 GHz frequency band (RF)

 or 300 to 428,000 GHz (IR)

 MAC layer

 medium access control layer

 protocol responsible for maintaining order in shared medium

 collision avoidance/detection

