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Outline 
 Interfacing basics 

 Microprocessor interfacing 

 I/O Addressing 

 Interrupts 

 Direct memory access 

 Arbitration 

 Hierarchical buses 

 Protocols 
 Serial 

 Parallel 

 Wireless 

 



Introduction 

 Embedded system functionality aspects 

 Processing 

 Transformation of data 

 Implemented using processors 

 Storage  

 Retention of data 

 Implemented using memory 

 Communication 

 Transfer of data between processors and memories 

 Implemented using buses 

 Called interfacing 



A simple bus 

 Wires: 

 Uni-directional or bi-directional 

 One line may represent multiple 

wires 

 Bus 

 Set of wires with a single function 

 Address bus, data bus 

 Or, entire collection of wires 

 Address, data and control 

 Associated protocol: rules for 

communication 

bus structure 

Processor Memory 
rd'/wr 

enable 

addr[0-11] 

data[0-7] 

bus 



Ports 

 Conducting device on periphery 

 Connects bus to processor or memory 

 Often referred to as a pin 

 Actual pins on periphery of IC package that plug into socket on printed-circuit board 

 Sometimes metallic balls instead of pins 

 Today, metal “pads” connecting processors and memories within single IC 

 Single wire or set of wires with single function 

 E.g., 12-wire address port 

 

bus 

Processor Memory rd'/wr 

enable 

addr[0-11] 

data[0-7] 

port 



Timing Diagrams 

 Most common method for describing a 
communication protocol 

 Time proceeds to the right on x-axis 

 Control signal: low or high 

 May be active low (e.g., go’, /go, or go_L) 

 Use terms assert (active) and deassert 

 Asserting go’ means go=0 

 Data signal: not valid or valid 

 Protocol may have subprotocols 

 Called bus cycle, e.g., read and write 

 Each may be several clock cycles 

 Read example 

 rd’/wr set low,address placed on addr for at 
least tsetup time before enable asserted, 
enable triggers memory to place data on 
data wires by time tread  write protocol 

rd'/wr 

enable 

addr 

data 

tsetup twrite 

read protocol 

rd'/wr 

enable 

addr 

data 

tsetup tread 



Basic protocol concepts 
 Actor: master initiates, servant (slave) respond 

 Direction: sender, receiver 

 Addresses: special kind of data 
 Specifies a location in memory, a peripheral, or a register within a peripheral 

 Time multiplexing 
 Share a single set of wires for multiple pieces of data 

 Saves wires at expense of time 

data serializing address/data muxing 

Master Servant req 

data(8) 

data(15:0) data(15:0) 

mux demux 

Master Servant req 

addr/data 

req 

addr/data 

addr data 

mux demux 

addr data 

req 

data 15:8 7:0 addr data 

Time-multiplexed data transfer 



Basic protocol concepts: control 

methods 

Strobe protocol Handshake protocol 

Master Servant req 

ack 

req 

data 

Master Servant 

data 

req 

data 

taccess 

req 

data 

ack 

1. Master asserts req to receive data 

2. Servant puts data on bus within time taccess 

1 

2 

3 

4 

3. Master receives data and deasserts req 

4. Servant ready for next request 

1 

2 

3 

4 

1. Master asserts req to receive data 

2. Servant puts data on bus and asserts ack 

3. Master receives data and deasserts req 

4. Servant ready for next request 



A strobe/handshake compromise 

Fast-response case 

req 

data 

wait 

1 3 

4 

1. Master asserts req to receive data 

2. Servant puts data on bus within time taccess 

3. Master receives data and deasserts req 

4. Servant ready for next request 

2 

Slow-response case 

Master Servant req 

wait 

data 

req 

data 

wait 

1 

3 

4 

1. Master asserts req to receive data 

2. Servant can't put data within taccess, asserts wait ack 

3. Servant puts data on bus and deasserts wait 

4. Master receives data and deasserts req 

2 

taccess taccess 

5. Servant ready for next request 

5 

     (wait line is unused) 



ISA bus protocol – memory access 

 ISA: Industry Standard 

Architecture 

 Common in 80x86’s 

 Features 

 20-bit address 

 Compromise 

strobe/handshake control 

 4 cycles default 

 Unless CHRDY deasserted 

– resulting in additional wait 

cycles (up to 6) 

 

Microprocessor Memory I/O Device 

ISA bus 

ADDRESS 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMR 

 

CHRDY 

 

 

 

C1                    C2                    WAIT              C3                    

C4 

DATA 

memory-read bus cycle 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMW 

 

CHRDY 

 

 

 

C1                    C2                    WAIT              C3                    

C4 

DATA 

ADDRESS 

memory-write bus cycle 



Microprocessor interfacing: I/O 

addressing 

 A microprocessor communicates with other 
devices using some of its pins 
 Port-based I/O (parallel I/O) 
 Processor has one or more N-bit ports 

 Processor’s software reads and writes a port just like a 
register 

 E.g., P0 = 0xFF;  v = P1.2;  -- P0 and P1 are 8-bit ports 

 Bus-based I/O 
 Processor has address, data and control ports that form a 

single bus 

 Communication protocol is built into the processor 

 A single instruction carries out the read or write protocol on 
the bus 



Compromises/extensions 
 Parallel I/O peripheral 

 When processor only supports bus-based I/O 
but parallel I/O needed 

 Each port on peripheral connected to a 
register within peripheral that is read/written 
by the processor 

 Extended parallel I/O 
 When processor supports port-based I/O but 

more ports needed 

 One or more processor ports interface with 
parallel I/O peripheral extending total number 
of ports available for I/O 

 e.g., extending 4 ports to 6 ports in figure 

Processor Memory 

Parallel I/O peripheral 

Port A 

System bus 

Port C Port B 

Adding parallel I/O to a bus-

based I/O processor 

Processor 

Parallel I/O peripheral 

Port A Port B Port C 

Port 0 

Port 1 

Port 2 

Port 3 

Extended parallel I/O 



Types of bus-based I/O:  

memory-mapped I/O and standard I/O 

 Processor talks to both memory and peripherals using 
same bus – two ways to talk to peripherals 
 Memory-mapped I/O 
 Peripheral registers occupy addresses in same address space as 

memory 
 e.g., Bus has 16-bit address 
 lower 32K addresses may correspond to memory 
 upper 32k addresses may correspond to peripherals 

 Standard I/O (I/O-mapped I/O) 
 Additional pin (M/IO) on bus indicates whether a memory or 

peripheral access 
 e.g., Bus has 16-bit address 
 all 64K addresses correspond to memory when M/IO set to 0 
 all 64K addresses correspond to peripherals when M/IO set to 1 



Memory-mapped I/O vs. Standard 

I/O 

 Memory-mapped I/O 
 Requires no special instructions 
 Assembly instructions involving memory like MOV and ADD 

work with peripherals as well 

 Standard I/O requires special instructions (e.g., IN, OUT) to 
move data between peripheral registers and memory 

 Standard I/O 
 No loss of memory addresses to peripherals 

 Simpler address decoding logic in peripherals 
possible 
 When number of peripherals much smaller than address 

space then high-order address bits can be ignored 

 smaller and/or faster comparators 



ISA bus 

 ISA supports standard I/O 

 /IOR distinct from /MEMR for 

peripheral read 

 /IOW used for writes 

 16-bit address space for I/O 

vs. 20-bit address space for 

memory 

 Otherwise very similar to 

memory protocol 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[15-0] 

 

ALE 

 

/IOR 

 

CHRDY 

 

 

 

  C1                    C2                   WAIT              C3                    

C4 

DATA 

ADDRESS 

ISA I/O bus read protocol 



A basic memory protocol 

 Interfacing an 8051 to external memory 
 Ports P0 and P2 support port-based I/O when 8051 internal 

memory being used 

 Those ports serve as data/address buses when external memory is 
being used 

 16-bit address and 8-bit data are time multiplexed; low 8-bits of 
address must therefore be latched with aid of ALE signal 

P0 

 

P2 

 

Q 

 

ALE 

 

/RD 

Adr. 7..0 

Adr. 15…8 

Adr. 7…0 

Data 
 

 

 

 

 

 

 

 

 

 
8051 

 

 

 

 
74373 

P0 
 

 

 

 

 
HM6264 

D Q 

8 

P2 

ALE G 

A<0...15> 

D<0...7> 

/OE 

/WE 

/CS 

/WR 

/RD 

/CS1 

/PSEN 

CS2 

 

 

 
 

27C256 

/CS 

A<0...14> 

D<0...7> 

/OE 



A more complex memory protocol 

 Generates control signals to drive the TC55V2325FF memory chip in burst mode 

 Addr0 is the starting address input to device 

 GO is enable/disable input to device 

Specification for a single 

read operation 

CLK 

 

/ADSP 

 

/ADSC 

 

/ADV 

 

addr <15…0> 

/WE 

 

/OE 

 

/CS1 and /CS2 

 

CS3 

 

data<31…0> 

ADSP=1, 

ADSC=1 

ADV=1, OE=1, 

Addr = ‘Z’ 

ADSP=1, 

ADSC=0 

ADV=1, OE=1, 

Addr = ‘Z’ 

ADSP=1, 

ADSC=1 

ADV=0, OE=0, 

Addr = ‘Z’ 

GO=1 

GO=0  

Data is 

ready 

here! 

GO=1 

GO=1 

GO=0  

GO=0  

S0 S1 

S2 S3 

ADSP=0, 

ADSC=0 

ADV=0, OE=1, 

Addr = Addr0 

GO=0 

GO=1 

FSM description 



Microprocessor interfacing: interrupts 

 Suppose a peripheral intermittently receives data, 
which must be serviced by the processor 
 The processor can poll the peripheral regularly to 

see if data has arrived – wasteful 

 The peripheral can interrupt the processor when it 
has data 

 Requires an extra pin or pins: Int 
 If Int is 1, processor suspends current program, 

jumps to an Interrupt Service Routine, or ISR 

 Known as interrupt-driven I/O 

 Essentially, “polling” of the interrupt pin is built-into 
the hardware, so no extra time! 



Microprocessor interfacing: interrupts 

 What is the address (interrupt address vector) of the 

ISR? 

 Fixed interrupt 

 Address built into microprocessor, cannot be changed 

 Either ISR stored at address or a jump to actual ISR stored if not 

enough bytes available 

 Vectored interrupt 

 Peripheral must provide the address 

 Common when microprocessor has multiple peripherals 

connected by a system bus 

 Compromise: interrupt address table 



Interrupt-driven I/O using fixed ISR 

location 

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000. 

2: P1 asserts Int to request 

servicing by the 

microprocessor. 3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and sets PC to the ISR fixed location 

of 16.  

4(a): The ISR reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001.  

5: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing. 

 

4(b): After being read, P1 de-

asserts Int. 

T
im

e 



Interrupt-driven I/O using fixed ISR 

location  

1(a): P is executing its main program 

 

1(b): P1 receives input data in a register 

with address 0x8000. 

μP 

P1 P2 

System bus 

Int 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 



Interrupt-driven I/O using fixed ISR 

location  

2: P1 asserts Int to request servicing by 

the microprocessor 
 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int Int 

1 



Interrupt-driven I/O using fixed ISR 

location  

3: After completing instruction at 100, 

P sees Int asserted, saves the PC’s 

value of 100, and sets PC to the ISR 

fixed location of 16. 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 

100 100 



Interrupt-driven I/O using fixed ISR 

location  

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 

4(a): The ISR reads data from 0x8000, 

modifies the data, and writes the 

resulting data to 0x8001. 

 

4(b): After being read, P1 deasserts Int. 

 

100 

Int 
0 

P1 

System bus 

P1 

0x8000 

P2 

0x8001 



Interrupt-driven I/O using fixed ISR 

location  

5: The ISR returns, thus restoring PC to 

100+1=101, where P resumes 

executing. 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 

100 100 
+1 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

100 



Interrupt-driven I/O using vectored 

interrupt 

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000. 

2: P1 asserts Int to request servicing 

by the microprocessor. 3: After completing instruction at 100, μP sees Int 

asserted, saves the PC’s value of 100, and asserts 

Inta. 

5(a): μP jumps to the address on the bus (16). 

The ISR there reads data from 0x8000, modifies 

the data, and writes the resulting data to 0x8001.  

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing. 
 

5(b): After being read, P1 deasserts 

Int. 

T
im

e 

4: P1 detects Inta and puts interrupt 

address vector 16 on the data bus. 



Interrupt-driven I/O using vectored 

interrupt  

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Int 
Inta 

16 

1(a): P is executing its main program 

1(b): P1 receives input data in a register 

with address 0x8000. 



Interrupt-driven I/O using vectored 

interrupt  

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Inta 

16 

2: P1 asserts Int to request servicing by the 

microprocessor 

Int 
1 

Int 



Interrupt-driven I/O using vectored 

interrupt  

3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 
Inta 

16 

100 100 

1 
Inta 



Interrupt-driven I/O using vectored 

interrupt  

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 
Inta 

16 

100 

4: P1 detects Inta and puts interrupt 

address vector 16 on the data bus 

16 

16 

System bus 



Interrupt-driven I/O using vectored 

interrupt  

5(a): PC jumps to the address on the bus 

(16).  The ISR there reads data from 

0x8000, modifies the data, and writes the 

resulting data to 0x8001. 

 

5(b): After being read, P1 deasserts Int. 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 
Inta 

16 

100 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

P1 P2 

0x8000 0x8001 

System bus 

0 

Int 



Interrupt-driven I/O using vectored 

interrupt  

6: The ISR returns, thus restoring the PC to 

100+1=101, where the μP resumes 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

Int 

100 100 
+1 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

100 



Interrupt address table 

 Compromise between fixed and vectored 

interrupts 

 One interrupt pin 

 Table in memory holding ISR addresses (maybe 

256 words) 

 Peripheral doesn’t provide ISR address, but rather 

index into table 

 Fewer bits are sent by the peripheral 

 Can move ISR location without changing peripheral 



Additional interrupt issues 
 Maskable vs. non-maskable interrupts 

 Maskable: programmer can set bit that causes processor to 
ignore interrupt 
 Important when in the middle of time-critical code 

 Non-maskable: a separate interrupt pin that can’t be masked 
 Typically reserved for drastic situations, like power failure requiring 

immediate backup of data to non-volatile memory 

 Jump to ISR 
 Some microprocessors treat jump same as call of any 

subroutine 
 Complete state saved (PC, registers) – may take hundreds of 

cycles 

 Others only save partial state, like PC only 
 Thus, ISR must not modify registers, or else must save them first 

 Assembly-language programmer must be aware of which registers 
stored 



Direct memory access 
 Buffering 

 Temporarily storing data in memory before processing 
 Data accumulated in peripherals commonly buffered 

 Microprocessor could handle this with ISR 
 Storing and restoring microprocessor state inefficient 
 Regular program must wait 

 DMA controller more efficient 
 Separate single-purpose processor 
 Microprocessor relinquishes control of system bus to DMA 

controller 
 Microprocessor can meanwhile execute its regular program 

 No inefficient storing and restoring state due to ISR call 

 Regular program need not wait unless it requires the system bus 
 Harvard archictecture – processor can fetch and execute instructions as 

long as they don’t access data memory – if they do, processor stalls 



Peripheral to memory transfer without 

DMA, using vectored interrupt 

1(a): μP is executing its main program. 1(b): P1 receives input data in a register 

with address 0x8000. 

2: P1 asserts Int to request servicing by 

the microprocessor. 
3: After completing instruction at 100, μP sees Int 

asserted, saves the PC’s value of 100, and asserts Inta. 

5(a): μP jumps to the address on the bus (16). The ISR 

there reads data from 0x8000 and then writes it to 

0x0001, which is in memory.  

6: The ISR returns, thus restoring PC to 100+1=101, 

where μP resumes executing. 
 

5(b): After being read, P1 deasserts Int. 

T
im

e 

4: P1 detects Inta and puts interrupt 

address vector 16 on the data bus. 



Peripheral to memory transfer without DMA, 

using vectored interrupt 

1(a): P is executing its main program 

 

1(b): P1 receives input data in a register 

with address 0x8000. 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

Inta 

instruction  



Peripheral to memory transfer 

without DMA, using vectored 

interrupt  

2: P1 asserts Int to request servicing by the 

microprocessor 

 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

Inta 

instruction  
1 

Int 

100 



Peripheral to memory transfer 

without DMA, using vectored 

interrupt  

3: After completing instruction at 100, P 

sees Int asserted, saves the PC’s value of 

100, and asserts Inta. 

 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

Inta 

instruction  

100 

Inta 
1 

100 



Peripheral to memory transfer 

without DMA, using vectored 

interrupt (cont’) 

4: P1 detects Inta and puts interrupt address 

vector 16 on the data bus. 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

Inta 

instruction  

100 

16 

16 
System bus 



Peripheral to memory transfer 

without DMA, using vectored 

interrupt (cont’) 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

instruction  

Inta 

5(a): P jumps to the address on the bus (16).  

The ISR there reads data from 0x8000 and 

then writes it to 0x0001, which is in memory. 

 

5(b): After being read, P1 de-asserts Int. 
 

100 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: 

ISR  

100: 

101: instruction  

... 

Main program 
... 

instruction  

RETI  # ISR return 

System bus 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: 

ISR  

100: 

101: instruction  

... 

Main program 
... 

instruction  

RETI  # ISR return 

0x8000 

P1 

Data memory 

0x0001 

Int 

0 



Peripheral to memory transfer 

without DMA, using vectored 

interrupt (cont’) 

μP 

P1 

System bus 

0x8000 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: instruction  

... 

Main program 
... 

Program memory 

PC 

Data memory 

0x0000 0x0001 

16 
Int 

instruction  

Inta 

6: The ISR returns, thus restoring PC to 

100+1=101, where P resumes executing. 

100 100 
+1 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x0001, R0  

19: 

ISR  

100: 

101: instruction  

... 

Main program 
... 

instruction  

RETI  # ISR return 



Peripheral to memory transfer with 

DMA 

1(a): μP is executing its main program. 

It has already configured the DMA ctrl 

registers. 

1(b): P1 receives input 

data in a register with 

address 0x8000. 

2: P1 asserts req to request 

servicing by DMA ctrl. 

7(b): P1 de-asserts req. 

T
im

e 

3: DMA ctrl asserts Dreq 

to request control of 

system bus. 

4: After executing instruction 100, μP 

sees Dreq asserted, releases the system 

bus, asserts Dack, and resumes 

execution. μP stalls only if it needs the 

system bus to continue executing. 
5: (a) DMA ctrl asserts 

ack (b) reads data from 

0x8000 and (b) writes that 

data to 0x0001.  

6:. DMA de-asserts Dreq 

and ack completing 

handshake with P1.  
7(a): μP de-asserts Dack and resumes 

control of the bus. 



Peripheral to memory transfer with 

DMA (cont’) 

1(a): P is executing its main program. It has 

already configured the DMA ctrl registers 

 

1(b): P1 receives input data in a register with 

address 0x8000. 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req 



Peripheral to memory transfer with 

DMA (cont’) 

2: P1 asserts req to request servicing 

 by DMA ctrl. 

 

3: DMA ctrl asserts Dreq to request control of 

system bus 

 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req req 

1 

P1 
Dreq 

1 

DMA ctrl P1 



Peripheral to memory transfer with 

DMA (cont’) 

4: After executing instruction 100, P sees 

Dreq asserted, releases the system bus, asserts 

Dack, and resumes execution, P stalls only if 

it needs the system bus to continue executing. 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req 

Dack 
1 



Peripheral to memory transfer with 

DMA (cont’) 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req 

Data memory 

DMA ctrl P1 

System bus 

0x8000 

0x0000 0x0001 

0x0001 

0x8000 

ack 

req 

5: DMA ctrl (a) asserts ack, (b) reads data 

from 0x8000, and (c) writes that data to 

0x0001. 

 

(Meanwhile, processor still executing if not 

stalled!) 

ack 
1 



Peripheral to memory transfer with 

DMA (cont’) 

6: DMA de-asserts Dreq and ack completing 

the handshake with P1. 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req 

ack 
0 Dreq 

0 



ISA bus DMA cycles 

Processor Memory 

I/O Device 

ISA-Bus 

DMA 

R 

A 

R A 

DMA Memory-Write Bus Cycle 

ADDRESS 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/IOR 

 

/MEMW 

 

CHRDY 

 

 

 

C1            C2           C3           C4          C5           C6           

C7 

DATA 

DMA Memory-Read Bus Cycle 

ADDRESS 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMR 

 

/IOW 

 

CHRDY 

 

 

 

C1            C2           C3           C4           C5           C6            

C7 

DATA 



Arbitration: Priority arbiter 
 Consider the situation where multiple peripherals request service from 

single resource (e.g., microprocessor, DMA controller) simultaneously 
- which gets serviced first? 

 Priority arbiter 
 Single-purpose processor 
 Peripherals make requests to arbiter, arbiter makes requests to 

resource 
 Arbiter connected to system bus for configuration only 

 Micro-

processor 

Priority  

arbiter 

Peripheral1 

System bus 

Int 
3 

5 
7 

Inta 
Peripheral2 

Ireq1 

Iack2 

Iack1 

Ireq2 

2 2 

6 



Arbitration using a priority arbiter 

1. 1. Microprocessor is executing its program. 

2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.  

3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int. 

4. 4. Microprocessor stops executing its program and stores its state. 

5. 5. Microprocessor asserts Inta. 

6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1. 

7. 7. Peripheral1 puts its interrupt address vector on the system bus 

8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns 

9. (and completes handshake with arbiter). 

10. 9. Microprocessor resumes executing its program.  

Micro-

processor 

Priority  

arbiter 

Peripheral1 

System bus 

Int 
3 

5 
7 

Inta 
Peripheral2 

Ireq1 

Iack2 

Iack1 

Ireq2 

2 2 

6 



Arbitration: Priority arbiter 
 Types of priority 

 Fixed priority 

 each peripheral has unique rank 

 highest rank chosen first with simultaneous requests 

 preferred when clear difference in rank between 

peripherals 

 Rotating priority (round-robin) 

 priority changed based on history of servicing 

 better distribution of servicing especially among 

peripherals with similar priority demands 



Arbitration: Daisy-chain arbitration 

 Arbitration done by peripherals 
 Built into peripheral or external logic added 

 req input and ack output added to each peripheral 

 Peripherals connected to each other in daisy-chain manner 
 One peripheral connected to resource, all others connected “upstream” 
 Peripheral’s req flows “downstream” to resource, resource’s ack flows 

“upstream” to requesting peripheral 

 Closest peripheral has highest priority 

P 
System bus 

Int 

Inta 

Peripheral1 

Ack_in Ack_out 

Req_out Req_in 

Peripheral2 

Ack_in Ack_out 

Req_out Req_in 

Daisy-chain aware peripherals 

0 



Arbitration: Daisy-chain arbitration 

 Pros/cons 

 Easy to add/remove peripheral - no system 

redesign needed 

 Does not support rotating priority 

 One broken peripheral can cause loss of access to 

other peripherals 
P 

System bus 

Int 

Inta 

Peripheral1 

Ack_in Ack_out 

Req_out Req_in 

Peripheral2 

Ack_in Ack_out 

Req_out Req_in 

Daisy-chain aware peripherals 

0 

Micro-

processor 

Priority  

arbiter 

Peripheral

1 

System bus 

Int 

Inta 
Peripheral

2 

Ireq1 

Iack2 

Iack1 

Ireq2 



Network-oriented arbitration 

 When multiple microprocessors share a bus 

(sometimes called a network) 

 Arbitration typically built into bus protocol 

 Separate processors may try to write 

simultaneously causing collisions 

 Data must be resent 

 Don’t want to start sending again at same time 

 statistical methods can be used to reduce chances 

 Typically used for connecting multiple distant 

chips 

 Trend – use to connect multiple on-chip processors 



Example: Vectored interrupt using 

an interrupt table 
 Fixed priority: i.e., Peripheral1 has highest priority 

 Keyword “_at_” followed by memory address forces 
compiler to place variables in specific memory 
locations 

 e.g., memory-mapped registers in arbiter, peripherals 

 A peripheral’s index into interrupt table is sent to 
memory-mapped register in arbiter 

 Peripherals receive external data and raise interrupt Jump Table 

M
em

o
ry

 B
u

s 

Processor 

Peripheral 1 Peripheral 2 

Priority Arbiter 

MASK 

IDX0 

IDX1 

 

ENABLE 

 

 

DATA 

MEMORY 

void main() { 

InitializePeripherals(); 
for(;;) {} // main program goes here 

} 

unsigned char ARBITER_MASK_REG    _at_ 0xfff0; 

unsigned char ARBITER_CH0_INDEX_REG    _at_ 0xfff1; 

unsigned char ARBITER_CH1_INDEX_REG    _at_ 0xfff2; 

unsigned char ARBITER_ENABLE_REG    _at_ 0xfff3; 

unsigned char PERIPHERAL1_DATA_REG    _at_ 0xffe0; 

unsigned char PERIPHERAL2_DATA_REG    _at_ 0xffe1; 

unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100; 

void Peripheral1_ISR(void) { 
unsigned char data; 

data = PERIPHERAL1_DATA_REG; 
// do something with the data 

} 
void Peripheral2_ISR(void) { 

unsigned char data; 
data = PERIPHERAL2_DATA_REG; 

// do something with the data 
} 

void InitializePeripherals(void) { 
ARBITER_MASK_REG = 0x03; // enable both channels 

ARBITER_CH0_INDEX_REG = 13; 
ARBITER_CH1_INDEX_REG = 17; 

INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR; 
INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR; 

ARBITER_ENABLE_REG = 1; 
} 



Intel 8237 DMA controller 

Intel 8237 D[7..0] 

A[19..0] 

ALE 

MEMR 

MEMW 

IOR 

IOW 

 

HLDA 

HRQ 

REQ 0 

ACK 0 

 

REQ 1 

ACK 1 

 

REQ 2 

ACK 2 

 

REQ 3 

ACK 3 

Signal Description

D[7..0] These wires are connected to the system bus (ISA) and are used by the 

microprocessor to write to the internal registers of the 8237.

A[19..0] These wires are connected to the system bus (ISA) and are used by the DMA to 

issue the memory location where the transferred data is to be written to.  The 8237 is 

also addressed by the micro-processor through the lower bits of these address lines.ALE* This is the address latch enable signal.  The 8237 use this signal when driving the 

system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus 

(ISA). 

MEMW* This is the memory read signal issued by the 8237 when driving the system bus (ISA). 

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus 

(ISA) in order to read a byte from an I/O device

IOW* This is the I/O device write signal issued by the 8237 when driving the system bus 

(ISA) in order to write a byte to an I/O device. 

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it has 

relinquished the system bus (ISA).
HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a 

request to relinquish the system bus (ISA).

REQ 0,1,2,3 An attached device to one of these channels asserts this signal to request a DMA 

transfer.

ACK 0,1,2,3 The 8237 asserts this signal to grant a DMA transfer to an attached device to one of 

these channels.

*See the ISA bus description in this chapter for complete details.



Intel 8259 programmable priority 

controller 
Intel 8259 D[7..0] 

A[0..0] 

RD 

WR 

INT 

INTA 

 

CAS[2..0] 

SP/EN 

 

 

IR0 

IR1 

IR2 

IR3 

IR4 

IR5 

IR6 

IR7 

Signal Description

D[7..0] These wires are connected to the system bus and are used by the microprocessor to 

write or read the internal registers of the 8259.

A[0..0] This pin actis in cunjunction with WR/RD signals.  It is used by the 8259 to decipher 

various command words the microprocessor writes and status the microprocessor 

wishes to read.

WR When this write signal is asserted, the 8259 accepts the command on the data line, i.e., 

the microprocessor writes to the 8259 by placing a command on the data lines and 

asserting this signal.

RD When this read signal is asserted, the 8259 provides on the data lines its status, i.e., the 

microprocessor reads the status of the 8259 by asserting this signal and reading the data 

lines. 

INT This signal is asserted whenever a valid interrupt request is received by the 8259, i.e., it 

is used to interrupt the microprocessor.

INTA This signal, is used to enable 8259 interrupt-vector data onto the data bus by a sequence 

of interrupt acknowledge pulses issued by the microprocessor.

IR 

0,1,2,3,4,5,6,7

An interrupt request is executed by a peripheral device when one of these signals is 

asserted.

CAS[2..0] These are cascade signals to enable multiple 8259 chips to be chained together.

SP/EN This function is used in conjunction with the CAS signals for cascading purposes.



Multilevel bus architectures 

 Processor-local bus 

 High speed, wide, most frequent 
communication 

 Connects microprocessor, cache, 
memory controllers, etc. 

 Peripheral bus 

 Lower speed, narrower, less frequent 
communication 

 Typically industry standard bus (ISA, 
PCI) for portability 

Processor-local bus 

Micro- 

processor 

Cache Memory 

controller 

DMA 

controller 

Bridge Peripheral Peripheral Peripheral 

Peripheral bus 

• Don’t want one bus for all communication 

– Peripherals would need high-speed, processor-specific bus interface 

• excess gates, power consumption, and cost; less portable 

– Too many peripherals slows down bus 

• Bridge 

– Single-purpose processor converts communication between busses 



Advanced communication principles 
 Layering 

 Break complexity of communication protocol into pieces easier to design 
and understand 

 Lower levels provide services to higher level 

 Lower level might work with bits while higher level might work with packets of data 

 Physical layer 

 Lowest level in hierarchy 

 Medium to carry data from one actor (device or node) to another 

 Parallel communication 

 Physical layer capable of transporting multiple bits of data 

 Serial communication 

 Physical layer transports one bit of data at a time 

 Wireless communication 

 No physical connection needed for transport at physical layer 



Parallel communication 
 Multiple data, control, and possibly power wires 

 One bit per wire 

 High data throughput with short distances 

 Typically used when connecting devices on same IC 

or same circuit board 

 Bus must be kept short 

 long parallel wires result in high capacitance values which requires 

more time to charge/discharge 

 Data misalignment between wires increases as length increases 

 Higher cost, bulky 



Serial communication 

 Single data wire, possibly also control and power wires 

 Words transmitted one bit at a time 

 Higher data throughput with long distances 

 Less average capacitance, so more bits per unit of time 

 Cheaper, less bulky 

 More complex interfacing logic and communication 

protocol 

 Sender needs to decompose word into bits 

 Receiver needs to recompose bits into word 

 Control signals often sent on same wire as data increasing protocol 

complexity 



Wireless communication 
 Infrared (IR) 

 Electronic wave frequencies just below visible light spectrum 

 Diode emits infrared light to generate signal 

 Infrared transistor detects signal, conducts when exposed to 

infrared light 

 Cheap to build 

 Need line of sight, limited range 

 Radio frequency (RF) 

 Electromagnetic wave frequencies in radio spectrum 

 Analog circuitry and antenna needed on both sides of 

transmission 

 Line of sight not needed, transmitter power determines range 



Error detection and correction 
 Often part of bus protocol 

 Error detection: ability of receiver to detect errors during 
transmission 

 Error correction: ability of receiver and transmitter to cooperate to 
correct problem 

 Typically done by acknowledgement/retransmission protocol 

 Bit error: single bit is inverted 

 Burst of bit error: consecutive bits received incorrectly 

 Parity: extra bit sent with word used for error detection 

 Odd parity: data word plus parity bit contains odd number of 1’s 

 Even parity: data word plus parity bit contains even number of 1’s 

 Always detects single bit errors, but not all burst bit errors 

 Checksum: extra word sent with data packet of multiple words 

 e.g., extra word contains XOR sum of all data words in packet 



Serial protocols: I2C  

 I2C (Inter-IC) 

 Two-wire serial bus protocol developed by Philips Semiconductors 

nearly 20 years ago 

 Enables peripheral ICs to communicate using simple communication 

hardware 

 Data transfer rates up to 100 kbits/s and 7-bit addressing possible in 

normal mode 

 3.4 Mbits/s and 10-bit addressing in fast-mode 

 Common devices capable of interfacing to I2C bus: 

 EPROMS, Flash, and some RAM memory, real-time clocks, watchdog 

timers, and microcontrollers 



I2C bus structure 
SCL 

SDA 

Micro-

controller 

(master) 

EEPROM 

(servant) 

Temp. 

Sensor 

(servant) 

LCD-

controller 

(servant) < 400 pF 

Addr=0x01     Addr=0x02        Addr=0x03 

D 

C 

S

T 

A

R

T 

A

6 

A

5 

A

0 

R

/

w 

A

C

K 

D

8 

D

7 

D

0 

A

C

K 

S

T 

O

P 

From 

Servant 

From 

receiver 

Typical read/write cycle 

SDA 

SCL 

SDA 

SCL 

SDA 

SCL 

SDA 

SCL 

Start condition Sending 0 Sending 1 Stop condition 



Serial protocols: CAN 
 CAN (Controller area network) 

 Protocol for real-time applications  

 Developed by Robert Bosch GmbH 

 Originally for communication among components of cars 

 Applications now using CAN include: 

 elevator controllers, copiers, telescopes, production-line control systems, 
and medical instruments 

 Data transfer rates up to 1 Mbit/s and 11-bit addressing 

 Common devices interfacing with CAN: 

 8051-compatible 8592 processor and standalone CAN controllers 

 Actual physical design of CAN bus not specified in protocol 

 Requires devices to transmit/detect dominant and recessive signals to/from bus 

 e.g., ‘1’ = dominant, ‘0’ = recessive if single data wire used 

 Bus guarantees dominant signal prevails over recessive signal if asserted 
simultaneously 



Serial protocols: FireWire 
 FireWire (a.k.a. I-Link, Lynx, IEEE 1394) 

 High-performance serial bus developed by Apple Computer Inc. 

 Designed for interfacing independent electronic components 

 e.g., Desktop, scanner 

 Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing 

 Plug-and-play capabilities 

 Packet-based layered design structure 

 Applications using FireWire include: 

 disk drives, printers, scanners, cameras 

 Capable of supporting a LAN similar to Ethernet 

 64-bit address:  

 10 bits for network ids,  1023 subnetworks 

 6 bits for node ids, each subnetwork can have 63 nodes 

 48 bits for memory address, each node can have 281 terabytes of distinct locations 



Serial protocols: USB 
 USB (Universal Serial Bus) 

 Easier connection between PC and monitors, printers, digital speakers, 
modems, scanners, digital cameras, joysticks, multimedia game 
equipment 

 2 data rates: 

 12 Mbps for increased bandwidth devices 

 1.5 Mbps for lower-speed devices (joysticks, game pads) 

 Tiered star topology can be used 

 One USB device (hub) connected to PC 

 hub can be embedded in devices like monitor, printer, or keyboard or can be standalone 

 Multiple USB devices can be connected to hub 

 Up to 127 devices can be connected like this 

 USB host controller  

 Manages and controls bandwidth and driver software required by each 
peripheral 

 Dynamically allocates power downstream according to devices 
connected/disconnected 



Parallel protocols: PCI Bus 

 PCI Bus (Peripheral Component Interconnect) 

 High performance bus originated at Intel in the early 1990’s 

 Standard adopted by industry and administered by PCISIG (PCI Special 

Interest Group) 

 Interconnects chips, expansion boards, processor memory subsystems 

 Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing 

 Later extended to 64-bit while maintaining compatibility with 32-bit schemes 

 Synchronous bus architecture 

 Multiplexed data/address lines 



Parallel protocols: ARM Bus 

 ARM Bus 

 Designed and used internally by ARM Corporation 

 Interfaces with ARM line of processors 

 Many IC design companies have own bus protocol 

 Data transfer rate is a function of clock speed 

 If clock speed of bus is X, transfer rate = 16 x X bits/s  

 32-bit addressing 



Wireless protocols: IrDA 
 IrDA 

 Protocol suite that supports short-range point-to-point infrared 

data transmission 

 Created and promoted by the Infrared Data Association (IrDA) 

 Data transfer rate of 9.6 kbps and 4 Mbps 

 IrDA hardware deployed in notebook computers, printers, 

PDAs, digital cameras, public phones, cell phones 

 Lack of suitable drivers has slowed use by applications 

 Windows 2000/98 now include support 

 Becoming available on popular embedded OS’s 

 



Wireless protocols: Bluetooth 

 Bluetooth 

 New, global standard for wireless connectivity 

 Based on low-cost, short-range radio link 

 Connection established when within 10 meters of each other 

 No line-of-sight required 

 e.g., Connect to printer in another room 



Wireless Protocols: IEEE 802.11 
 IEEE 802.11 

 Proposed standard for wireless LANs 

 Specifies parameters for PHY and MAC layers of network 

 PHY layer 

 physical layer 

 handles transmission of data between nodes 

 provisions for data transfer rates of 1 or 2 Mbps 

 operates in 2.4 to 2.4835 GHz frequency band (RF) 

 or 300 to 428,000 GHz (IR) 

 MAC layer 

 medium access control layer 

 protocol responsible for maintaining order in shared medium 

 collision avoidance/detection 


